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Propagation inhibition and wave localization in a two-dimensional random liquid medium
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Acoustic propagation and scattering in water containing many parallel air-filled cylinders is studied in an
exact manner. Two situations are considered and compared;~1! wave propagating through the array of cylin-
ders, imitating common experimental setups, and~2! wave transmitted from a source located inside the
ensemble. We show that waves can be blocked from propagation by disorders in the first scenario, but such an
inhibition does not necessarily lead to actual wave localization in the medium. The results indicate that the
traditional method may be ambiguous in discerning localization effects. Furthermore, the results reveal the
phenomenon of wave localization in a range of frequencies.
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I. INTRODUCTION

When propagating through media containing many sc
terers, waves will be repeatedly scattered by each scatt
forming a multiple scattering process@1#. Multiple scattering
of waves is responsible for many fascinating phenome
such as random laser@2#, electronic transport in impure so
ids @3#, and photonic or acoustic band gaps@4–6#. Under
proper conditions, multiple scattering leads to the unus
phenomenon of wave localization. That is, waves in a r
domly scattered medium are trapped in space and will
main confined around the initial transmitting site until dis
pated.

Over the past 20 years, tremendous efforts have been
voted to the investigation of the localization phenomenon
classical waves in random media~e.g., Refs.@7–14#!. Obser-
vation of classical wave localization is a difficult task, pa
tially because suitable systems are hard to find and part
because observation is often complicated by such effect
absorption and attenuation, leading to much debate@12,13#.

Another difficulty with previous observations may be a
sociated with the method that the localization is investigat
As stated in Ref.@12#, to date, claims of localization hav
been based on observations of the exponential deca
waves as they propagatethroughdisordered media. That is
in most previous experimental studies, the apparatus is se
in such a way that waves are transmitted at one end
scattering ensemble, then the scattered waves are reco
on the other end to measure the transmission through
sample. The results are subsequently compared with the
vious theory to infer possible localization effects. As will b
shown in this paper, we find that such a traditional meth
has ambiguities in isolating localization effects@15#.

The purpose of this paper is twofold. First, we would li
to point out that previous experimental methods have un
tainties in discerning localization effects, as the observa
can be obscured by effects such as reflection and deflec
These effects attenuate waves, resulting in a similar deca
transmission and thus making the data interpretation amb
ous. We show that while wave localization does lead to
inhibition in wave propagation, the propagation inhibitio
does not necessarily imply wave localization. In other wor
it is necessary to differentiate the situation that waves
1063-651X/2002/65~5!/056612~5!/$20.00 65 0566
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blocked from transmission from the situation that waves c
be actually localized in the medium. Second, we show tha
the system we study, waves are not always localized for
frequencies in conflict with the previous prediction. Wa
localization is evident in a range of frequencies and wh
there is a sufficient density of random scatterers.

The paper is structured as follows. In the following se
tion, we present the model system and the necessary for
lation solving the multiple scattering of waves in the syste
The results and discussion are presented in Sec. III, follow
by a brief summary in Sec. IV.

II. FORMULATION AND SYSTEM SETUP

The model in this paper is acoustic propagation in wa
containing many parallel air-filled cylinders. Different from
the common approach that derives approximately a diffus
equation for the ensemble-averaged energy, our method
solve the wave propagation from the fundamental wa
equation, without resorting to approximations. The mo
has been studied previously for the coherent behavior
acoustic propagation@16# and the acoustic complete ban
gaps@17#.

Consider N straight cylinders located atrW i with i
51,2, . . . ,N to form either a completely random or regul
array. An acoustic line source transmitting monochroma
waves is placed atrWs . The scattered wave from each cylind
is a response to the total incident wave composed of
direct wave from the source and the multiply scattered wa
from other cylinders. The final wave reaching a receiver
cated atrW r is the sum of the direct wave from the source a
the scattered waves from all the cylinders. Such a scatte
problem can be solvedexactly, following Twersky @18#.
While the details are in Ref.@19#, the essential procedure
are summarized below.

The scattered wave from thej th cylinder can be written as

ps~rW,rW j !5 (
n52`

`

ipAn
j Hn

(1)~kurW2rW j u!einfrW2rW j, ~1!

where k is the wave number of the medium,Hn
(1) is the
©2002 The American Physical Society12-1
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nth-order Hankel function of the first kind, andf rW2rW j
is the

azimuthal angle of the vectorrW2rW i relative to the positivex
axis.

The total wave incident around thei th scattererpin
i (rW) is a

superposition of the direct contribution from the sour
p0(rW)5G(rW2rWs)5 ipH0

(1)(kurW2rWsu) and the scattered
waves from all other scatterers:

pin
i ~rW !5p0~rW !1 (

j 51,j Þ i

N

ps~rW,rW j !. ~2!

In order to separate the governing equations into modes
can express the total incident wave in term of the mo
aboutrW i :

pin
i ~rW !5 (

n52`

`

Bn
i Jn~kurW2rW i u!einfrW2rW i. ~3!

The expansion is in terms of Bessel functions of the first k
Jn to ensure thatpin

i (rW) does not diverge asrW→rW i . The co-
efficientsBn

i are related to theAn
j in Eq. ~1! through Eq.~2!.

A particularBn
i represents the strength of thenth mode of the

total incident wave on thei-th scatterer with respect to thei th
scatterer’s coordinate system~i.e. aroundrW i). In order to iso-
late this mode on the right hand side of Eq.~2!, and thus
determine a particularBn

i in terms of the set ofAn
j , we need

to expressps(rW,rW j ), for eachj Þ i , in terms of the modes with
respect to thei th scatterer. In other words, we wantps(rW,rW j )
in the form

ps~rW,rW j !5 (
n52`

`

Cn
j ,iJn~kurW2rW i u!eifrW2rW i. ~4!

This can be acheived~i.e. Cn
j ,i expressed in terms ofAn

i )
through the following addition theorem@20#:

Hn
(1)~kurW2rW j u!einfrW2rW j5einfrW i2rW j (

l 52`

`

Hn2 l
(1) ~kurW i2rW j u!

3e2 i l frW i2rW jJl~kurW2rW i u!eil frW2rW i.

~5!

Taking Eq.~5! into Eq. ~1!, we have

ps~rW,rW j !5 (
n52`

`

ipAn
j einfrW i2rW j (

l 52`

`

Hn2 l
(1) ~kurW i2rW j u!

3e2 i l frW i2rW jJl~kurW2rW i u!eil frW2rW i. ~6!

Comparing with Eq.~4!, we see that

Cn
j ,i5 (

l 52`

`

ipAl
jHl 2n

(1) ~kurW i2rW j u!exp@ i ~ l 2n!f rW i2rW j
#.

~7!
05661
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Now we can relateBn
i to Cn

j ,i ~and thus toAl
j ) through Eq.

~2!. First note that through the addition theorem the sou
wave can be written,

p0~rW !5 ipH0
(1)~kr !

5 ip (
l 52`

`

H2 l
(1)~kurW i u!e2 i l frW iJl~kurW2rW i u!eil frW2rW i

5 (
l 52`

`

Sl
iJl~kurW2rW i u!eil frW2rW i, ~8!

where

Sl
i5 ipH2 l

(1)~kurW i u!e2 i l frW i. ~9!

Matching coefficients in Eq.~2! and using Eqs.~3!, ~4!, and
~8!, we have

Bn
i 5Sn

i 1 (
j 51,j Þ i

N

Cn
j ,i . ~10!

At this stage,Sn
i are known, but bothBn

i and Al
j are un-

known. Boundary conditions will give another equation r
lating them.

The boundary conditions are that the pressure and
normal velocity should be continuous across the interf
between a scatterer and the surrounding medium. The
wave outside thei th scatterer ispext5pin

i (rW)1ps(rW,rW i). The
wave inside thei th scatterer can be expressed as

pint
i ~rW !5 (

n52`

`

Dn
i Jn~k1

i urW2rW i u!einfrW2rW i. ~11!

The boundary conditions are then

pextu]V i5pintu]V i ~12!

and

1

r

]pext

]n U]V i5
1

r1
i

]pint

]n U
]V i

, ~13!

where]V i is the boundary of thei th scatterer,k and r are
the wave number and density of the surrounding mediu
and k1

i and r1
i are the wave number and density of thei th

scatterer, respectively. Using Eqs.~1!, ~3!, and ~11!, multi-
plying both sides of the boundary condition equations
einfrW2rW i, and integrating over the boundary]V i , we have for
the case of circular cylindrical scatterers,

Bn
i Jn~kai !1 ipAn

i Hn
(1)~kai !5Dn

i Jn~kai /hi !, ~14!

Bn
i Jn8~kai !1 ipAn

i Hn
(1)8~kai !5

1

gihi
Dn

i Jn8~kai /hi !. ~15!
2-2
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Here ai is the radius of thei th cylinder, gi5r1
i /r is the

density ratio, andhi5k/k1
i 5c1

i /c is the sound speed ratio fo
the i th cylinder. Elimination ofDn

i gives

Bn
i 5 ipGn

i An
i , ~16!

where

Gn
i 5FHn

(1)~kai !Jn8~kai /hi !2gihiHn
(1)8~kai !Jn~kai /hi !

gihiJn8~kai !Jn~kai /hi !2Jn~kai !Jn8~kai /hi !
G .

~17!

If we define

Tn
i 5Sn

i / ip5H2n
(1)~kurW i u!e2 infrW i ~18!

and

Gl ,n
i , j 5Hl 2n

(1) ~kurW i2rW j u!exp@ i ~ l 2n!f rW i2rW j
#, iÞ j ,

~19!

then Eq.~10! becomes

FIG. 1. Conceptual layout:~a! acoustic propagation through
cloud of cylinders;~b! acoustic transmission from a line sourc
located inside a cylinder cloud.
05661
Gn
i An

i 2 (
j 51,j Þ i

N

(
l 52`

`

Gl ,n
i , j Al

j5Tn
i . ~20!

If the value ofn is limited to some finite range, then this is
matrix equation for the coefficientsAn

i . Once solved, the
total wave at any point outside all cylinders is

p~rW !5p0~rW !1(
i 51

N

(
n52`

`

ipAn
i Hn

(1)~kurW2rW i u!einfrW2rW i.

~21!

The acoustic intensity is represented by the squared mod
of the transmitted wave. The normalized transmission is
fined asT[p/p0.

We must stress that total wave expressed by Eq.~21! in-
corporates all orders of multiple scattering. We also emp
size that the above derivation is valid for any configuratio
of the cylinders. In other words, Eq.~21! works for situations
where the cylinders can be placed either randomly or in
der. For a regular array of the cylinders, band structures
the wave propagation appear. They can be readily compu
by the standard plane-wave method@6#.

III. RESULTS AND DISCUSSION

In the following computation, we assumeN uniform air
cylinders of radiusa. The fraction of area occupied by th
cylinders per unit area isb. The average distance betwee
nearest neighbors is, therefore,d5(p/b)1/2a, which is also
the lattice constant for the corresponding square lattice ar
Two situations are considered;~1! wave propagating through
the array of cylinders, labeled hereafter as the ‘‘outside’’ sit
ation that imitates the traditional experimental setup, and~2!
wave transmitted from a source located inside the ensem
labeled hereafter as the ‘‘inside’’ situation. Both cases a
illustrated in Fig. 1. For the outside case, all cylinders a
randomly or regularly placed within a rectangular area w
length L and widthW. The transmitter and receiver are lo
cated at some distance from the two opposite sides of
scattering area. For the inside situation, all cylinders a
placed completely randomly or regularly within a circle o
radius L with the transmitting source located at the cent
and the receiver located outside the scattering cloud. In
g
ow
re-

the

rs
s
d.
FIG. 2. The middle and right panels, referrin
to the inside and outside cases, respectively, sh
the normalized acoustic transmission versus f
quency in terms of nondimensionalka. Here the
comparison is made between the results from
corresponding square arrays~solid lines! and
from the complete random array of cylinde
~dotted lines!. Left panel: The band structure
computed by the plane-wave expansion metho
2-3
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computation, the acoustic intensity is normalized in suc
way that its value equals unity when there are no scatte
present; thus the uninteresting geometrical spreading effe
naturally eliminated. We scale all lengths by the parameted,
and the frequency in terms of nondimensionalka; in this
way, the computation becomes nondimensional.

A set of numerical computations has been performed
various area fractionsb, numbersN, and dimensionless fre
quencyka. The major controlling parameter isb. The trans-
mitter and receiver are placed at a distance of 2d from the
sample; in fact, we found that as long as we keep the s
metry the results remain qualitatively unchanged as the
sitions of transmitter and receiver vary. Though it is the li
source that is used in computation, the features hold e
when a beamed cylindrical plane wave is used.

Figure 2 presents typical results for the transmitted int
sity as a function ofka for the two situations in Fig. 1, with
b51023 andN5200. For reference, we also plot the ba
structure, following Refs.@6,17#, and the transmission fo
each corresponding square lattice with the sameb. Here it is
shown that for both situations, there is a significant transm
sion reduction regime fromka50.007 to about 0.022, which
is roughly coincident with the complete band gap shown
Fig. 2~a!, and within this regime, the transmission is le
inhibited compared to that from the corresponding squ
lattice arrays. For the inside case, the reduction regime
the random scattering is identified as the localization ran
This reduction regime will be widened asb increases, but
will disappear whenb drops below about 1025. Comparing
the results from the random arrays and that from the co
sponding square lattice arrays, a significant difference is
parent: outside the severe reduction regime, the transmis
is reduced by the randomization in the outside case, for
ample, atka50.05, but stays nearly unchanged in the ins
scenario. More explicitly, the randomness tends to block
wave propagation outside the gap regime. Previously, s
propagation inhibition caused by randomness has been

FIG. 3. Normalized acoustic transmission and its fluctuat
versus the sample size for two frequencies. The left and right pa
refer to the inside and outside cases, respectively. The estim
slopes for the transmission are indicated in the figure. HereT
[p/p0.
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garded as the indication of wave localization. In what fo
lows, we show that waves are actually not localized at th
frequencies.

We consider two frequencies as an example,ka50.01
and 0.05. Figure 3 presents the results for the rand
ensemble-averaged transmission and its fluctuation as a f
tion of the sample size at the two frequencies for the fix
b51023. For the outside case, the width of the sample
fixed at W520. The sample size is varied by adjusting t
number of the cylinders. A few important features are d
covered.

For ka50.01, the transmission decays exponentially w
the sample size for both inside and outside situations. In
outside case, there are two decay slopes, i.e.,20.042 7 and
20.001 9. There is a transition regime separating the
slopes. The transmission starts to decay with slo
20.042 7, followed by a milder decay of slope20.0019.
The slope of20.042 7 is nearly the same as the decay slo
of 20.046 0 in the inside case. Obviously, this is becaus
ka50.01, waves are localized. This exponential decay ac
ally indicates that waves are trapped or localized near
transmitting source; this is clearly shown by the top porti
of Fig. 3~b!. The second slope in the outside case forka
50.01 is due to the finite width of the sample, as will b

n
ls

ted

FIG. 4. Normalized total acoustic transmission across a sca
ing array as a function of the sample length for different sam
widths. The solid line in~b! is the numerical extrapolation as th
width approaches infinity.
2-4
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discussed later. Inside the localization regime, the transm
sion fluctuation is small, as expected from an earlier w
@16#. Here we see that within the localization regime, wa
localization can be observed in both outside and inside
narios.

For ka50.05, the inside and outside scenarios differ s
nificantly. While for the outside case the transmission
creases exponentially with a slope of 0.002 7 along the p
the transmission in the inside situation does not decrease
the outside case, the transmission fluctuation increases
drops along the path, emulating the localization effect.
the inside case, however, the transmission fluctuation re
senting the diffusive intensity@1# increases as more and mo
scattering occurs along the path, fully complying with t
well-known nonlocalized Milne diffusion. The large fluctua
tion implies that the transmission is sensitive to the distri
tion of the cylinders, which is another indication of the no
localization property@16#. In fact, the apparent decay in th
outside case is due to the scattering attenuation that
waves are reflected and scattered away from the forward
rection. These results suggest that waves are actually
localized forka50.05, and it would be a mistake to interpr
the exponential decay shown in the outside situation as
indication of wave localization.

Now we consider the width effect in the outside situatio
In Fig. 4, the ensemble-averaged total transmission is plo
as a function of the sample size~L! for three widths~W! at
two frequencies.

For frequencies inside the localization regime, the sec
slope is due to the finite width, and can be interpreted
follows. At ka50.01, the localization effect is dominan
thus leading to a rapid decay in transmission along the p
giving rise to the first slope. As expected, this slope is alm
independent of the width. As the sample size increases,
directly transmitted waves are almost completely block
But, due to the finite width, a small amount of the deflec
waves around the sample sides can still reach the rece
e
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When increasing the sample size~L! for a fixed width (W),
this effect gradually diminishes along the path, yielding t
second slope. Increasing width~W! will reduce this finite-
width effect, and thus the amount of deflected waves rea
ing the receiver will also decrease, as shown. The width
fect disappears when the width approaches infinity. Forka
50.05, outside the localization regime, the transmission
cays nearly exponentially along the path. As the width
creases, the slope will become smaller, and will be satura
to a value of20.0008. These results indicate that in t
outside scenario, the path-dependent transmission beh
similarly for frequencies either inside or outside the localiz
tion regime as long as the width is sufficiently large; the
fore, the phenomenon of wave localization cannot be isola
in this scenario.

IV. CONCLUDING REMARKS

In summary, we have pointed out that current experim
tal methods have uncertainties in discerning localization
fects. This also partially explains why in the past the obs
vation of localization effects hasnot been conclusive and ha
led to so much debate~e.g., Refs.@12,13#!. In order to isolate
the phenomenon of wave localization without ambigui
new experimental approaches are desirable. Finally, we
stress that whether waves are localized or extended is
intrinsic property of the system that is supposed to be i
nite. This property does not depend on the source, and sh
not depend on boundaries either. While the source is pla
inside the medium with increasing sizes, the infinite syst
can be mimicked and the localization property could
probed without ambiguity.
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